Integral Domains in Which Every Nonzero w-Flat Ideal Is w-Invertible

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When every $P$-flat ideal is flat

In this paper‎, ‎we study the class of rings in which every $P$-flat‎ ‎ideal is flat and which will be called $PFF$-rings‎. ‎In particular‎, ‎Von Neumann regular rings‎, ‎hereditary rings‎, ‎semi-hereditary ring‎, ‎PID and arithmetical rings are examples of $PFF$-rings‎. ‎In the context domain‎, ‎this notion coincide with‎ ‎Pr"{u}fer domain‎. ‎We provide necessary and sufficient conditions for‎...

متن کامل

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

The $w$-FF property in trivial extensions

‎Let $D$ be an integral domain with quotient field $K$‎, ‎$E$ be a $K$-vector space‎, ‎$R = D propto E$ be the trivial extension of $D$ by $E$‎, ‎and $w$ be the so-called $w$-operation‎. ‎In this paper‎, ‎we show that‎ ‎$R$ is a $w$-FF ring if and only if $D$ is a $w$-FF domain; and‎ ‎in this case‎, ‎each $w$-flat $w$-ideal of $R$ is $w$-invertible.

متن کامل

Rings for which every simple module is almost injective

We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2020

ISSN: 2227-7390

DOI: 10.3390/math8020247